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High-accuracy and robust localisation of large control
markers for geometric camera calibration
Damien Douxchamps, Member, IEEE, and Kunihiro Chihara, Senior Member, IEEE

Abstract—Accurate measurement of the position of features in an image is subject to a fundamental compromise: the features must
be both small, to limit the effect of non-linear distortions, and large, to limit the effect of noise and discretization. This constrains both
the accuracy and the robustness of image measurements, which play an important role in geometric camera calibration as well as
in all subsequent measurements based on that calibration. In this paper, we present a new geometric camera calibration technique
that exploits the complete camera model during the localization of control markers, thereby abolishing the marker size compromise.
Large markers allow a dense pattern to be used instead of a simple disc, resulting in a significant increase in accuracy and robustness.
When highly planar markers are used, geometric camera calibration based on synthetic images leads to true errors of 0.002 pixels,
even in the presence of artifacts such as noise, illumination gradients, compression, blurring and limited dynamic range. The camera
parameters are also accurately recovered, even for complex camera models.

Index Terms—camera calibration, imaging geometry, image measurement, high resolution, noise, ray tracing, sub-pixel
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1 INTRODUCTION

MACHINE vision is frequently used to provide quanti-
tative measurements for a wide range of applications,

from simple telecentric designs used in factory automation
to more complex, multi-camera systems used for 3D shape
reconstruction. High accuracy is commonly required, especially
for methods based on triangulation such as stereo vision or
laser ranging. Indeed, such methods have a limited baseline
and must cope with a wide range of object distances, leading
to resolution and accuracy requirements well below the pixel
level. To provide useful 3D measures, it is thus necessary to
determine the relationship between these image measures and
usable metric measures with a comparable or higher accuracy.
This relationship is formalized in the camera model, and
the determination of its parameters, called geometric camera
calibration, must therefore be performed with great care.

For these reasons, geometric camera calibration has been
an active research field and numerous further developments
have been proposed since the method of Tsai [1]. Most offline
approaches now achieve less than 0.1 pixels residual using low-
cost hardware [2], such as the ubiquitous chess-board pattern
[3] [4]. While this calibration is sufficient in most cases, several
machine vision applications such as those mentioned above
would benefit from a higher accuracy. To this end, Heikkilä
proposed a high-accuracy ellipse-fitting technique [5] that uses
a first-order elliptic approximation for the circular shape of a
calibration marker in the image plane, taking into account the
effect of perspective. He later applied this marker localization
technique to camera calibration [6] [7] and, using a dihedron
as target, obtained high-quality results with a residual error
of 0.02 pixels. Developing this technique, Redert et al. added
second-order corrections by weighting the pixel intensities with
their true area and taking into account image curvature [8].
Residual errors as low as 0.01 pixels were obtained. Although
these results are impressive, they have not been tested on a
wide range of image imperfections and they fail in a number
of cases; for instance, Heikkilä’s results were obtained with
images containing little noise and Redert’s technique fails to
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maintain its accuracy with noisy or blurred images.
The origin of both the limited accuracy and the noise sen-

sitivity of these techniques is explained by a fundamental
compromise that must be made during the localization of
calibration markers: the markers must be large, to decrease
noise sensitivity and increase localization accuracy, but they
also must be small, to minimize the difference between the
marker model (such as ellipses or lines) and the more complex
real shape of the marker in the image, a shape which is affected
by non-linear optical distortions.
The approach we present in this paper overcomes the com-

promise on the marker size by applying the full camera model
to build synthetic images that are then compared with the
real images during optimization, thereby avoiding unnecessary
approximations such as a marker model in the image plane
or an inverse calibration model [7]. This type of calibration
was pioneered by Robert [9]. Using larger markers opens new
perspectives, such as the use of markers made of a dense
pattern rather than a single boundary. This novelty increases
the effective interface length of the marker, and enhances both
the robustness and the accuracy of the localization process.
Besides the localization of markers in the image plane,

the accuracy of geometric camera calibration depends on the
camera model, the geometric accuracy of the calibration target,
the optimization algorithms used to converge on the camera
parameters and the operational conditions of the experiments.
These aspects are addressed respectively by using a complete
camera model, by compensating for manufacturing errors of
the calibration target and by using a robust matching criterion.
Together with the use of large markers and high-resolution
images, taking all these aspects into account allows us to reach
a true error of under 0.002 pixels. This accuracy holds even in
the simultaneous presence of several strong image artifacts.
The markers, however, must remain very accurate and planar.

2 CAMERA MODEL AND IMAGING GEOMETRY

In this section, the classic geometry and camera model are
briefly discussed. To this effect, let us review the projection
of a point P (Fig. 1, top) in three-dimensional space onto its
image p′ on the image plane. This projection involves four
transformations (Fig. 1, bottom).
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Fig. 1. Geometric transformations modeled by the camera
calibration and the corresponding transformations. Inverting
the perspective projection is not possible in itself but can be
performed with additional information such as a second view
(stereo-vision), a scene model or a laser plane. There is no
analytic solution to the transformation from ideal image coor-
dinates ac to distorted image coordinates ad [7]. The rigid body
transformation is based on three rotation angles α, β and γ and
the translation vector t.

In the first transformation, the position [X, Y, Z]T of P in the
world referential W is expressed in the camera referential C.
The center of projection O of the camera is located at the origin
of C. The camera referential has its z axis perpendicular to the
image plane and its x and y axes parallel to the image lines
and columns, respectively. This rigid body transformation can
be written as
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where [x, y, z]T are the coordinates of P in C, R is a rotation
matrix built on three Euler angles (α, β, γ) and t is the
translation vector between the two referentials.

The second transformation is a perspective projection of P
onto its image [u, v]T in the image plane using the pinhole
camera model [10]. The third step is a linear transformation of
the image that includes a change in origin and a rescaling. The
second and third transformations can be written together as a
single matrix operation [11] [12]:
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where fx and fy are the horizontal and vertical focal lengths
expressed in pixel units, k is the skew of the image plane axes
and [u0, v0]

T are the coordinates of the principal point c where
the z axis of C intersects with the image plane.

The linear camera model obtained by combining (1) and (2)
is convenient because it is reversible and its parameters can be
estimated directly [11]. However, non-linear optical distortions
are not included, and it is therefore insufficient for accurate

camera calibration. In reality, only the geometrically distorted
image coordinates ad=[u′, v′]T can be measured in the image
plane. These are linked to the ideal, or corrected, image co-
ordinates ac=[u, v]T with the following fourth transformation
[7]:

ac = ad − F(δ,ad), (3)

where F is a non-linear distortion function of parameters δ.
The classic model for the non-linear distortion function is the
sum of radial distortions Dr and tangential distortions Dt

[10], to which we also add the prism distortions Dp [13]. The
center of the distortions cd = (ud, vd) also does not necessarily
coincide with the principal point c = (u0, v0) [10]. This results
in the following model for the non-linear distortions:

F(δ,ad) = Dt + Dr + Dp, (4)

δ = (a0, a1, a2, a3, a4, p0, p1, p2, p3, s0, s1, s2, s3, cd). (5)

Each of these three distortions is defined as a function of
different distortion parameters:
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ū = u′
− ud, v̄ = v′

− vd, r2 = ū2 + v̄2. (6d)

In this form, the parameters of the distortions can spread
over more than 20 orders of magnitude, which can lead to
instabilities in the optimization. This problem is solved by
dividing each parameter ai, pi and si by fx elevated to a power
equal to the power of their multiplier r, e.g., a3 → a3/f8

x ,
p2 → p2/f4

x [14].
Note that the inverse of (3) has no analytical solution [10],

so that the following distortion model is only approximate [7]
[15]:

ad ≈ ac + F(δ,ac), (7)

even though it is often considered an equality when high
accuracy is not required [16] [17]. Therefore, while it is pos-
sible to obtain a corrected image coordinate from a distorted
one, some approximations are necessary to obtain a distorted
coordinate from an ideal image coordinate. Heikkilä presented
an approximate inverse model which is able to fit observations
with an average error of 0.005 pixels [7]. This additional error
remains significant if a very high accuracy is sought, as it is
here, so that only the forward model (3) will be used in what
follows. If needed, the parameters of the inverse model can
easily be obtained once the parameters of the forward model
have been determined.

3 ESTIMATION OF THE IMAGE POSITION OF THE CALI-
BRATION MARKERS

Accurate location of 3D features in the image plane is one of
the most important steps in camera calibration. For reasons of
accuracy and stability, the use of larger, typically circular mark-
ers is desirable. As the markers encompass increasingly larger
image areas, however, non-linear distortions significantly affect
the markers’ image representation to the point at which an
elliptic approximation for their outline (such as [5]) becomes
insufficient. The approach chosen here is to use the full camera
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Fig. 2. The model of the image intensity at the pixel level. A single pixel of the image plane (center) is projected onto the target
plane (left) where it intersects with the boundary of a marker of center G and radius r. The resulting black area and white area
encompassed by this pixel projection are estimated by calculating their approximative boundary P (right) in the image plane. The
ratio of these two areas can then be used to estimate the pixel intensity.

model, with all its non-linear distortion terms, to match the
2D discrete image data directly with the 3D target and marker
models. Optimizing the match between synthetic and observed
images of the marker provides the location of the marker. In
addition, the camera model, the target model and the marker
model do not depend on each other, leading to a more flexible
approach.

3.1 Image modeling

Ray tracing can be used to build an image of the target from
its model providing that the camera is already calibrated.
However, the camera cannot be considered calibrated since
the intent is to use ray tracing during the calibration phase
itself. This quandary will be solved, as described in Section 4,
by proceeding iteratively. Here, meanwhile, the camera is
assumed to be already calibrated. The models of the calibration
markers are also known, both in 3D shape and in intensity
pattern. For the sake of simplicity, the marker model is chosen
here as a black disc on a white background resting on a planar
surface.

Each pixel of the image sensor collects light arriving within a
pyramid delimited by the four outbound projection rays from
each corner of the pixel (Fig 2). If non-linear distortions can
be considered negligible at the pixel level, the intersection of
this pyramid with a planar marker is a quadrilateral which
consists of a white area, a black area or both. Furthermore,
suppose that the target surface is lambertian and the lighting
is uniform at the pixel level. Defining Rw as the white area
of the pixel on the image plane and Rb as the black area, the
modeled intensity Im(ϕ) of a pixel ϕ is then proportional to
the ratio between the white area Rw and the total area Rw +Rb

of the pixel:

Im(ϕ) = K
Rw(ϕ)

Rb(ϕ) + Rw(ϕ)
, (8)

where K is a proportionality factor (for example, K=255 to
model 8-bit images). To determine the intensity of each pixel,
the relative amount of white area encompassed by each image
pixel ϕ must thus be calculated. This process, depicted in Fig. 2,
is based on one elementary ray tracing operation R which uses
the complete camera model (1)-(6) to associate a binary marker
intensity with every image coordinate p and center g of the
circular marker. Applied to p and g, these four transformations
yield two points P and G of the target plane, from which one
can readily infer the intensity of P.

The ray tracing operation R is used multiple times within
the same pixel to determine three points Xi of the boundary
between the black and white regions. A parabolic approxima-
tion P of the boundary is then calculated and integrated to
find Rw and Rb.

3.2 Matching the synthetic and observed images

The observed intensity Io(ϕ) also depends on the ratio of white
and black areas, but with a transformation L that is not known
and may vary within an image region, for example due to
uneven lighting. To bypass the lack of knowledge about L,
two quantities Bw and Bb are calculated:

Bw =

P
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P
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, (9a)
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P

ϕ∈U
Io(ϕ) (K − Im(ϕ))

P

ϕ∈U
(K − Im(ϕ))

, (9b)

where U is the image region where the marker has been
detected. Bw is a measure of the match between the bright
areas of the observed image Io and the synthetic image Im;
it will be maximal when the bright areas of the synthetic
image are aligned with the bright areas of the observed im-
age. Similarly, Bb measures the match of the dark areas. The
difference Bw −Bb is thus a measure of the match between the
synthetic and observed images of the marker, and can be used
to estimate the optimal position ĝ of the observed marker’s
center g in the image plane:

ĝ = argmax
g

(Bw − Bb) . (10)

To start the iterative process, an initial estimate of the observed
marker center g0 is obtained by an intensity-weighted measure
of its center of gravity (COG). The marker center ĝ is then
updated to maximize the correlation between the synthetic
and observed images of the markers using a Nelder-Mead
optimization scheme [18].
This marker localization technique takes the full camera

model into account, since the latter is at the heart of the image
modeling in R, thereby avoiding approximate camera models
[7] or marker models in the image plane [5]. This approach also
avoids direct comparison between an observed luminance and
a theoretical luminance, which would be difficult to calculate in
the presence of image artifacts such as illumination gradients.
Finally, it is not based on differential measurements, and is
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therefore expected to be more robust to noise. Localization
accuracies of below 0.0005 pixels and having negligible bias
are typically obtained using this technique with large markers
and known camera model parameters, which is close to the
theoretical estimate of 0.00033 pixels [19].

4 GEOMETRIC CAMERA CALIBRATION

The non-linear geometric camera calibration itself is a well-
documented process that iteratively optimizes the intrinsic
and extrinsic parameters of the camera model, given a set
of matched image coordinates [xi, yi]

T and world coordinates
[Xi, Yi, Zi]

T obtained from known markers (see, for example,
[1] [3] [7] [20]). However, the procedure described in Section 3
requires the camera parameters (the calibration output) to esti-
mate the image location of the markers (the calibration input).
This quandary can be solved by nesting the iterative non-linear
camera calibration process within an iterative estimation of
the image position of the markers. The complete calibration
process then consists of three steps: 1) the determination of
initial estimates; 2) the camera calibration itself; and 3) the
accurate localization of the markers in the image plane. Steps
2 and 3 are repeated until convergence is reached.

In what follows, multiple views of a planar target are used
for calibration [3]; other cases, such as a single view of a
trihedral target, can be easily derived. When multiple views
are used, the last view can yield useful extrinsic parameters
since the camera and target will not subsequently be moved.
However, the calibration process will provide estimations for
the extrinsic parameters of each view.

4.1 Initial estimates

Five initial estimations are necessary before the calibration can
start. First, the world coordinates of the calibration markers
are obtained from the known target model. Second, initial
estimates of the image positions of the calibration markers
are calculated by analyzing each calibration image. Third, a
match between the world and image coordinates in each view
is determined using the Vogel approximation method (VAM)
[21]. Fourth, the internal camera parameters are set to

fx = fy = f/dx, u0 = sx/2, v0 = sy/2, k = 0, (11)

where f is the assumed focal length, [sx, sy] is the image size
and dx is the pixel pitch. The non-linear distortions are all
set to zero. Fifth and last, initial estimates for the camera
orientation and position with respect to the target (i.e., the
extrinsic parameters) are obtained for each view of the target
using Dementhon’s algorithm [22] on the initial image and
world coordinates of the markers.

4.2 Optimization

Once initial estimates are obtained, an off-the-shelf Levenberg-
Marquart optimization scheme [23] on the intrinsic and ex-
trinsic camera parameters is used to minimize the difference
between observed and synthetic image coordinates simultane-
ously, for all views of the calibration target. The synthetic image
coordinates are usually obtained by projecting the correspond-
ing world coordinates onto the image plane and applying
distortions to them. However, this requires an approximate
inverse model, which cannot be used here for reasons of accu-
racy. As Fig. 1 shows, this difference can be computed without
approximations in the space of corrected image coordinates

Fig. 3. A real calibration image with a 25-marker target in its
center.

ac, thereby splitting the application of the camera model in
two: 1) the observed image coordinates are corrected using the
non-linear distortion parameters; and 2) the synthetic image
coordinates are obtained by applying (1) and (2) to the 3D
positions of the target markers. The difference between these
two image coordinates can then be used as the criterion for the
optimization.
A refinement is added to the process when the optimization

has reasonably converged: the 3D positions of the calibration
markers are allowed to vary and thus become part of the set
of unknown variables. This was proposed by Lavest [24] and
can reduce the manufacturing cost of accurate targets. Errors
in the marker’s position of up to 10% in their spacing can be
compensated for in this fashion.
After convergence, a more accurate position of the markers

can be obtained using the latest camera parameter set in the
relocation process described in Section 3. A new optimization
of the calibration parameters can then be recomputed using the
latest marker positions, and reiteration of these two processes
leads to two interleaved optimizations. The convergence of
the inner camera calibration is usually fast, requiring less
than 50 iterations, and the convergence of the whole outer
optimization, including image measurements, is completed in
three to five cycles.

5 EXPERIMENTS

Experiments were conducted using a white planar calibration
target made of 25 calibration black markers in a 5×5 matrix
arrangement. Each calibration marker is 106 mm in diameter
and their spacing is 110 mm. A pattern of concentric circles is
used instead of a simple disc (Fig. 3), thereby allowing the total
length of the interface between the black and white regions of a
single marker to grow to over 3 meters. Each of the eight circles
has a thickness of 3 mm. To avoid orientation ambiguity, the
reference marker of the target does not possess a central dot
(Fig. 3, lower-left marker).
A set of 69 calibration pictures were taken with a Nikon D2h

digital camera equipped with a Nikon AFS 12-24 mm DX zoom
lens set to 24 mm and f/16. The resolution of this camera is
2482×1648 pixels for a sensor size of 24×16 mm. The target and
the camera were placed at different relative locations to cover
both the whole image (Fig. 4) and the viewed volume. The
distances between the target and the camera range from ≈1m
to ≈4m. The marker diameters in the image plane range from
76 to 230 pixels (average 150 pixels). The uncompressed raw
images had their exposure optimized and were demosaiced
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using the AHD technique [25]. The number of unknowns is
495 and the number of equations 3450.

The global accuracy of the calibration can be estimated from
the residual of the optimization, defined as the root mean
square (RMS) of the differences between the projection of each
marker’s 3D center onto the image plane and the measured
image coordinates of the center of the same marker. However,
when using synthetic images, all internal and external parame-
ters of the calibration are known and a better estimate, the true
pixel error (TPE), can then be computed similarly but with true
image coordinates instead of measured ones.

5.1 Synthetic images

The accuracy of the calibration process is estimated by ap-
plying it to a set of synthetic calibration images built with
known marker positions, intrinsic parameters and extrinsic
parameters. A first calibration of the real image set was per-
formed, resulting in a residual of 0.045 pixels. The estimated
parameters were then rounded and used to create this set
of synthetic calibration images with the sub-pixel intensity
estimation detailed in Section 3. The image was then blurred
by a 3-by-3 Gaussian filter and additive noise was added (σ=2).

The calibration of the synthetic image set returns a residual
of 0.0065 pixels and a TPE of 0.0021 pixels. We have observed

TABLE 1
Retrieved calibration parameters and their errors

True Average Theoretical Observed
value bias std. dev. std. dev.

fx 2475.0 0.0328 0.00286 0.00340
fy 2475.0 0.00521 0.00217 0.00245
u0 1240.0 -0.733 0.0525 0.0631
v0 790.0 -0.300 0.0493 0.0506
ud 1180.0 0.351 0.0546 0.0699
vd 836.0 -0.219 0.0450 0.0500
k 0.0001 0.00000563 0.000000517 0.000000578
a0 0.01 0.0000978 0.00000614 0.00000688
a1 0.9 -0.000468 0.000110 0.000134
a2 -7.0 -0.00202 0.000879 0.00110
a3 23.0 0.0230 0.0317 0.00406
a4 -28.0 -0.0463 0.0424 0.00549
p0 26.0 -0.342 0.0263 0.0312
p1 -12.0 -0.181 0.0222 0.0254
p2 -0.1 -0.00223 0.00400 0.00406
p3 -2.0 0.114 0.00394 0.00481
s0 -26.0 0.361 0.0264 0.0315
s1 14.0 0.191 0.0222 0.0252
s2 0.5 0.0128 0.00643 0.00607
s3 2.0 -0.165 0.00506 0.00557
tx -244.676 0.449 0.0297 0.0335
ty 354.410 0.165 0.0247 0.0292
tz 1349.413 0.0290 0.00713 0.00797
α 178.029 0.0242 0.00176 0.00243
β 135.270 -0.00976 0.00101 0.0311
γ 176.598 0.0174 0.00127 0.00224

this 3-fold difference between these two figures in all successful
calibrations. Systematic errors along the x and y axes are
negligible at -0.00015 and -0.00007 pixels, respectively. The
standard deviation of the TPEs is 0.0011. Fig. 4 shows that the
TPEs for the 1725 points used in this calibration are uniformly
distributed across the image plane, and Fig. 5 shows the
isotropic character of the distribution of the TPEs.

The bias and standard deviation of the estimated camera
model parameters were obtained from the calibration of 100
image sets and are presented in Table 1. The biases are small
and the theoretical errors, estimated as described in [7], are
very close to the observed errors. All extrinsic parameters
cannot be shown due to their large number (69×6); one set
is presented for a typical calibration image.

Compared to the reference TPE of 0.0021 obtained with
large markers (eight circles for a total interface length of
3098 mm), smaller markers increase the TPE: 0.0035 (five
circles, 1382 mm), 0.0066 (two circles, 346 mm) and 0.0102
(one circle, 151 mm). Our approach shows scalability, achieving
results that are on a par with Heikkilä’s [7] when small markers
are used. The global performance of our calibration technique
remains stable for a smaller number of images, with TPEs
of 0.0022 (50 images), 0.0024 (30 images), 0.0029 (10 images)
and 0.0035 (six images). The accuracies of the camera model
parameters are more affected by a limitation of the number
of calibration images, and are roughly inversely proportional
to the number of images. Accuracies are unpredictable when
fewer than 10 images are used.

The importance of using a full non-linear camera model dur-
ing the localisation of calibration markers can be emphasised
by attempting this localisation with a reduced set of non-linear
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parameters. Omitting s2 and s3 leads to a TPE of 0.0029, a
small but measurable loss in accuracy. Further omitting p2 and
p3 leads to a TPE of 0.0034 pixels and further omitting a3

and a4 leads to a TPE of 0.0465 pixels. Omitting all non-linear
distortion terms results in a large TPE of 0.446 pixels.

5.2 Noise tests

Various levels of different imperfections were applied to the
image to assess the robustness of the large-marker approach:
uniform noise, an illumination gradient, Gaussian low-pass fil-
tering, limitation of the dynamic range and JPEG compression.
In addition, two target imperfections were tested: mis-location
of the calibration markers, and the non-planarity of the target’s
surface. The number of concentric circles in each target marker
was also varied to investigate the importance of using large
patterns with a long interface.

5.2.1 Uniform noise

Robustness to noise is important for high-resolution images,
which often display more noise due to their smaller photosites.
The effect of an additive uniform noise on calibration accuracy
is shown in Fig. 6. The image SNR is defined in dB as
20 log(As/An), where As is the signal amplitude (here, 128)
and An is the noise amplitude [10]. The accuracy remains
stable over most of the noise range and increases steadily
with the interface perimeter of the calibration marker. For
large calibration markers, calibration accuracy remains below
0.003 pixels even with a very low SNR of 8.2 dB, clearly
outperforming other calibration techniques [3] [8]. This ro-
bustness is attributed to the averaging of the noise across
the whole effective perimeter of the calibration marker. The
accuracy obtained for the smallest calibration markers matches
the results of Heikkilä [7].

5.2.2 Illumination gradient

Illumination gradients are difficult to avoid in real-life situa-
tions. In this test (Fig. 7), a vertical luminance gradient was
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Fig. 7. Influence of a luminance gradient. Miniatures (left to
right) show a calibration image for gradients of 2.1 dB, 5.2 dB,
10.1 dB and 18.6 dB.
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Fig. 8. Evolution of the TPE with Gaussian low-pass filtering.
Miniatures (left to right) show a target marker for low-pass filter
widths of σ=1.0, 1.5, 2.0 and 2.5 pixels.

applied to the whole image. The gradient level is defined
in dB as 20 log(2As/(GM − Gm)), where GM and Gm are
respectively the maximal and minimal luminance of the image.
This gradient is not constant with respect to the target, but with
respect to the camera. Therefore, errors in marker localization
due to the gradient were expected to be more pronounced
on internal parameters such as the focal lengths and the
principal point. However, no significant change was observed
in these parameters even with a steep gradient. The effect of
the gradient is in fact minimal and almost linear over the wide
test range.
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to right) show a target marker for dynamic ranges of 0 dB (binary
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5.2.3 Gaussian low-pass filtering

Another common defect of real images is low-pass filtering,
which can be due to optics or post-processing (e.g., in the
case of Bayer filters). Our tests (Fig. 8) show much better
results than those achieved by Redert et al., and are comparable
to those of Heikkilä [7], having good performance up to a
standard deviation of σ=1.5. The maximal acceptable standard
deviation also depends on the image distance between two
circles of the marker: when σ approaches this distance, the ad-
vantage of using large markers is quickly lost due to the strong
overlapping between the concentric circles. The advantage of
multiple circles being lost, results converge towards the same
curve for broader low-pass filters. For the smallest markers
(151 mm perimeter), the localisation fails to converge for broad
low-pass filtering. In such cases, the poor contrast over a small
area does not allow the localisation process to lock on the faint
marker’s edges.

5.2.4 Dynamic range

For Ni luminosity levels, the dynamic range is defined in dB as
20 log Ni. Our tests (Fig. 9) show that the algorithm is almost
completely insensitive to reductions of the dynamic range. The
error starts to climb steadily from a limited range of 20 dB,
but even at the minimal range of 0 dB (a binary image) the
effect of the dynamic range is limited to a doubling of the
error. From 20 dB to 48 dB (255 levels of gray) the error is
inversely proportional to the effective perimeter of the marker.
This increasing error is due to discretization. For instance, in a
binary image with a marker perimeter of 151 mm and a pixel
size of 1 mm, only about 151 discrete levels are available for
the optimization function (10), which seems to be not enough
to converge smoothly to a global optimum.

5.2.5 JPEG compression

Although this is less important than other tests, an algorithm
that is robust to image compression is advantageous in the case
of high-resolution images and videos and would, for instance,
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Fig. 11. Evolution of the TPE with target non-planarity. Minia-
tures (left to right) show a target marker for surface amplitudes
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facilitate remote calibration of cameras. JPEG compression was
applied at different levels of quality to the calibration images
prior to calibration (Fig. 10). The errors grow steadily but
remain below 130% of the minimum error even when the
quality reaches 20%. For a quality of 1%, the worst calibration
accuracy remains under 0.025 pixels.

5.2.6 Target non-planarity

The assumption that the target is planar was made in Sec-
tion 3, but in practice perfect planarity cannot be achieved.
To evaluate the effect of target non-planarity, sets of synthetic
calibration pictures were created using a bi-dimensional sine-
wave ripple, rather than a plane, as the support surface. To
obtain a different distortion for each marker, the period of the
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Fig. 12. Evolution of the TPE with mis-location of target mark-
ers.

ripple was set to 90 mm, a non-multiple of the marker interval,
and the center of the ripple was offset by 20 mm along the
x axis. The amplitude of the ripple was varied from zero (a
plane surface) to 5 mm. The effect of non-planarity is significant
(Fig. 11), with a TPE of 0.5 pixels for an amplitude of 2 mm,
as was also observed by Zhang [3]. In fact, an amplitude as
low as 0.02 mm produces a measurable decrease in accuracy.
The curves converge when non-planarity becomes very large,
because matching between the distorted shape and the circular
model can only be performed close to the target center, which
remains relatively elliptic due to its small size relative to the
sine wave period. Striving for a planar target is therefore of
great importance.

5.2.7 Mis-location of calibration markers

Random noise was added to the initial estimates of the world
coordinates of the markers to verify that their optimization
was effective (Fig. 12). The calibration remains stable even
when noise of up to 10% of the marker distance (10 mm)
is applied, which shows the effectiveness of the approach of
Lavest [24]. For larger markers, large errors in their location
lead to poor initial estimations of their position during the first
localization step due to incorrect estimations of the perspective
distortions. These errors are difficult to compensate for in the
later stages, and the algorithm fails to converge. However, this
has few practical consequences since the threshold for this
phenomenon is very high (Fig. 12).

5.3 Real images

Noise tests show that our method is robust to many sources
of imperfection, even when such imperfections greatly affect
the calibration images. However, synthetic images may still
depart from real images. To investigate this, a number of
image imperfections were added to the synthetic image set of
Section 5.1 to approach the real image set: blurring (σ=0.7),
limitation of the dynamic range to 45 dB, application of a
luminance gradient (18.6 dB) and addition of noise (SNR of
33 dB). The amplitudes of these artifacts were determined by
visual inspection of the synthetic and real images. Finally, a
target non-planarity of 0.1 mm was applied as described above.
The initial measurements of the positions of the markers were
also perturbed with uniform noise (amplitude of 0.1 mm). The
calibration of this set of realistic but synthetic images yields a

residual of 0.031 pixels. The greater part of this residual (0.025
pixels) is due to target non-planarity. The calibration of the
corresponding real image set has a slightly higher residual of
0.045 pixels, which comes from artifacts that were not taken
into account such as optical diffraction, lens aberration and
thermal effects. This difference between the residual obtained
from synthetic images (here, 0.0065 pixels) and real images
(here, 0.045 pixels) was previously observed by Heikkilä [7]
(synthetic: 0.020 pixels; real: 0.061 pixels) and highlights the
importance of using controlled experimental conditions and
high-quality hardware to achieve accurate calibration.

6 CONCLUSIONS

We have presented a geometric camera calibration technique
that uses large markers to provide simultaneously very ro-
bust and very accurate results. The proposed approach has
a number of advantages over existing techniques. First, it
involves separated models for the camera, the target and the
markers. Each model can therefore be adjusted independently,
for instance by adding higher-order terms to the camera model,
by using different marker patterns or by extending the ray
tracing to non-lambertian surfaces. Second, the exact world
positions of the markers do not need to be known exactly; only
the marker’s pattern must be very accurate and planar. This
both lowers the cost and enhances the durability of accurate
calibration targets. Third, the approach is scalable to lower-
resolution images. However, as the resolution increases, so
does the pixel accuracy and the robustness of the calibration,
because larger marker patterns can be used. This combined
increase in both resolution and accuracy makes high-resolution
imaging particularly attractive. Our experiments show that
a precision of 0.6 to 4 ppm can be obtained on an image
line of 2500 pixels if the calibration is performed in very
controlled conditions. Finally, the procedure for the localization
of markers can be used for measurements after calibration
has been performed. Real-time processing can be achieved,
with a synthetic marker image being generated in less than
0.003 seconds on standard hardware. Our approach is thus not
limited to calibration but offers a complete solution for high-
accuracy measurements for machine vision.
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