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Abstract— This paper presents a new technique for simul-
taneous traffic monitoring and law enforcement using a road-
side rig head based on two line-scan cameras. As the vehicle
travels across the vertical scanning lines, two images are formed
and can be correlated with each other to determine the vehicle
speed. Our first tests showed that the resulting videos are easily
interpreted by computers in real-time and that the measures
are both accurate (less than 1% error) and stable. In addition
to speed, the system is able to extract a broad range of traffic
information, among others the vehicle size, acceleration and
inter-vehicle distances.

I. INTRODUCTION

As the traffic density increases over the years, our society
looks for ways to optimize the throughput of roads not only
by using appropriate traffic management but also by making
the roads safer, all of which requires a certain level of law
enforcement. In that perspective, this paper presents a new
sensor based on line-scan cameras that is able to measure
several parameters of the traffic, among others the vehicle
speed, acceleration and length. Moreover, the target accuracy
of the proposed approach is less than1% which makes it
more than suitable for law enforcement applications.

Classic video monitoring does not have the resolution and
framerate necessary to reach this kind of accuracy and lack in
stability due to complex segmentation, among others [1] [2].
On the other hand, radars do have an acceptable accuracy for
law enforcement but lack the rich output of a video system
which makes them unsuitable in most traffic monitoring ap-
plications. Our technique elegantly combines the advantages
of the radars with the convenience of a video system which
can be easily interpreted by humans or computers; a far cry
from classic video-based road monitoring.

Our idea for this new multi-purpose system is to use two
line-scan cameras to scan the road perpendicularly to the axis
of motion of the vehicles (Fig. 1a). The latter are scanned
as they pass in front of the cameras and we can calculate
the timeT2 − T1 needed by a vehicle to go from the first to
the second camera. Because the line rate of these cameras is
very high (up to 50000 lines/sec) we can expect an accuracy
that is better than current solutions.

We will start by laying out the principles behind our
new line-scan approach and proving its feasibility. After a
description of the experiments, a section reviews the image
processing tools used to extract all information from the line
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sequences. The results of this process are then presented and
discussed.

II. PRINCIPLE AND FEASABILITY

The setup presented in Fig. 1a consists in two line-scan
cameras separated by a distanceb that we call the baseline.
The field of view of each camera is a vertical plane, orthog-
onal to both the road plane and the direction of the traffic.
The beginning and end of the scan of a vehicle by each
camera correspond to four key instantsT1...T4, represented
in Fig. 1b. The resulting line-scan images are shown in
Fig. 1c. Note that the vehicles will appear ’stretched’ or
’compressed’ depending on their speed and acceleration.
Given this simple geometry, the camera baselineb, the speed
s of the vehicle and the time∆T = T2 − T1 needed by the
vehicle to go from one camera to the other are related with
the expression:

s =
b

∆T
=

b

n/f
, (1)

where n is the number of lines of delay between the
appearance of the vehicle on each line-scan sequence andf is
the camera line rate (in Hertz). Using this simple expression
we can already verify that the parameters involved are within
the capabilities of current hardware. Let us suppose as a
first approximation that the error on the detection of points
in the image is one pixel. Since two indexes are used in
the calculation of∆T the error on its evaluation is roughly
√

2/f and at leastn
√

2 lines will be needed for a relative
error of1/n. The relative errorǫs on the vehicle speeds can
be estimated as a function of the baseline, the sampling rate
and the vehicle speed:
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where∆s is the absolute speed error. This leads to a required
line rate of 6600Hz for a typical baseline of one meter and
an accuracy of 1% at 120km/h, which is well within the
capability of line-scan cameras.

The very high line rate also means that we will have a very
short exposure time. To compensate for this we use a camera
with very large rectangular pixels. Their surface is 40 times
larger than pixels from a regular camera which increase the
camera sensitivity by the same factor. Binning was also used
to increase the camera response to levels compatible with
outdoor lighting conditions and a line rate around 5000Hz.

III. FIELD EXPERIMENTS

Before starting the road-side trials the camera rig was
calibrated offline once for all. Due to the special linear
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Fig. 1. Principles of the line-scan speed measurement system: (a) three
dimensional view of the setup, with the scanning planes in light gray; (b)
side view of the setup at entering/leaving timesT1...T4; (c) the two image
scans of the vehicle

sensors involved we have designed a specific procedure for
their calibration. This aspect is not detailed here but the
interested reader will find more information about it in [3].
The principal result of the calibration is the determination
of the baseline and the obtention of parallel imaging planes.
For our tests the baseline was measured as 593mm and the
parallelism of the imaging planes is such that 10 meters away
from the camera, the baseline will not have changed more
than 2mm.

The calibrated line-scan monitoring rig can then be used
in two different basic configurations: with the camera on
the roadside or with the camera under a bridge, looking
downward. (Other configurations are possible but one then
looses the ability to measure the height or the width of the
vehicles.) For our tests we used the lateral view for several

Fig. 2. An excerpt of a typical sequence: camera 1 (top) and camera 2
(bottom).

reasons: i) it is more interesting if a classification of the
vehicles is required, ii) it is easier to setup and iii) it contains
more features than the top view, providing more matching
opportunities because logos and window frames are mostly
located on the vehicle side. The tests were performed on a
small road on a sunny day with a typical distance of 3 meters
between the camera and the vehicles. A resulting sequence
is presented in Fig. 2. It is important to note that in line-scan
images the horizontal axis represents the time (Fig. 1c). Since
the line rate is high the horizontal size of the image will be
large too: it stretches on 15000 pixels for a little less than
three seconds of recording at a line rate of 4882.8Hz. Given
the baseline calculated above and a typical speed of 70km/h
at the location chosen for our tests we can use (2) to estimate
the errorǫs at 1.3% for speed measurements and 1.8% for
length estimations.

IV. IMAGE PROCESSING FOR LINE-SCAN
SEQUENCES

Image processing is usually a computer-intensive opera-
tion that is difficult to perform in real-time without expensive
hardware or the use of simpler, often limiting algorithms.
Our approach solves this quandary thanks to the degenerated
view of the scene provided by the line-scan cameas which is
easily interpreted without major limitations by simple, stable
and real-time algorithms. Moreover, the scope of metric
information inferred from the image measurements is broad
and accurate.

The first step is a rough detection of the front and
back boundaries of the vehicles which is performed with
a background comparison in the sequence of lines. Since we
use a linear sensor the reference background is actually a
single line which is obtained regularly as the average of a
bundle of typically a hundred lines. As can be seen in Fig.
2 the background is very stable across the whole vehicle
length. Indeed, on the contrary to real images where such
long averaging of data is not possible, line-scan cameras
operate at a much higher frequency so that the ’large’ average
on 100 lines has a temporal length of only a few hundredth
of a second. The detection will therefore not be subject to
problems like illumination changes or other slow background
changes because such events happen on a much slower time
scale [4]. The only significant issue is the shadow that is
detected as part of the vehicle. To eliminate it in the future
we plan to limit the background detection to a upper part of



Fig. 3. The detected boundaries of the vehicle. Overestimation of the
length due to shadow is clearly visible in the front of the vehicle.

the image as well as lower the camera closer to the ground.
An example of detected boundaries is shown in Fig. 3.

From the vehicle boundaries in the two images we can
obtain a first estimation of the vehicle speedSv, lengthLv

and accelerationAv using (1):

Sv = bf/(B2
f − B1

f ), Lv = Sv(B1
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f )/f (3)
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where Bi
f and Bi

r are respectively the front and rear line
indexes of a vehicle in camerai.

The first speed estimation that we just obtained above is
not accurate and may show instabilities because it is based on
a single boundary detection. To obtain denser measurements
we compute the whole speed profile of the vehicle along
the horizontal axis (which represents the time). This time-
evolution will allow us to obtain more stable measures.

As (3) shows, the speed depends on matching features
in both images. To this effect we use a subpixel Block
Matching Algorithm (BMA) to compute the optical flow
between the two scans of the vehicle [5] [6]. Given the very
similar images obtained from the two cameras we can use
the simple Sum of Absolute Difference (SAD) criteria to find
the vehicle speed for a specific position along its profile.
Moreover the displacement is purely horizontal which limits
the complexity to a fast unidimentional search using large
vertical image blocks. We can see that the degenerated
view of the line-scan cameras considerably simplifies the
processing of the sequences. We also use a modified Moravec
operator [7] to compute the BMA only when a block contains
enough horizontal variance to further enhance the speed
of the algorithm and avoid spurious estimations. From the
speed profile we obtain a more stable measure of the initial
vehicle speed and its acceleration through the use of a linear
regression [8]. The standard deviation from this fit is a
measure of the error and is shown in Table I. This speed
estimation is then used to infer a better measure of the
length which will then include a compensation for the vehicle
acceleration.

Besides the speed, acceleration and length, a line-scan
system can provide other extra information like the lateral
position of the vehicle on the road, its height and the inter-
vehicle distance. The two first ones are straightforward but
require to calibrate the camera on site which was not per-
formed for these first tests. The enforcement of the minimum

inter-vehicle distance is quite difficult today especiallyin the
extreme cases where vehicles follow each other so closely
that they will appear as one vehicle for most monitoring
systems. This typically happens with area-scan cameras but
line-scan cameras are able to differentiate the vehicles and
measure their distance thanks to their high speed and proper
orientation with respect to the road.

Suppose that two vehicles have been detected, one after
the other, and that their respective speedsSv,1 andSv,2 have
been measured. The delay between their appearance in the
first camera is

∆T =
(

B1
f,2 − B1

r,1

)

/f (5)

where the second subscript indicates the vehicle index. It
leads to the following estimation of their distanceD:

D = ∆T

(

Sv,1 + Sv,2

2

)

(6)

V. RESULTS

The results for a few selected vehicles are shown in Fig. 4
to Fig. 6. Table I summarises some important measurements
performed on the vehicles. A known test vehicle passed a
few times in front of our setup and in that case an indication
of its speed or acceleration is shown in the table.

For the test shown in Fig 2 the corresponding metric speed
Sv is 63.3km/h, which is below the 70km/h displayed by the
vehicle meter but still plausible given the tolerance of the
latter. As we do not have a ground truth measure of the speed
we will use the length measure as an indicator of the quality
of our results. The true length of the vehicle is available from
the manufacturer, itself determined by visual inspection of
the line-scan video. The error that we will calculate from
this true length will be an upper boundary of the speed error
because the length estimation depends on the speed (see (3)).
The full vehicle length cannot be used, however, because it is
subject to shadow errors: the estimated length is 4.66m while
the true value is 4.39m. To get rid of the shadow effect we
use the more recognisable wheelbase as test feature. It was
measured as 2.64m which is very close to the true value of
2.61m and within the expected accuracy found in section III.

A first observation is that the speed profile sometimes
shows a decreasing value on the windshield of the car,
as in Fig. 6 between lines 600 and 750. The reason be-
hind this problem lies in the large difference between the
horizontal and vertical image resolution. Indeed, a vertical
misalignement of the cameras of one pixel will yield a much
greater error in displacement estimation when the features
are slanted. To limit this effect we allow the block matching
to perform a limited vertical scan but this does not cancel
the error entirely. A better calibration and a higher vertical
image resolution would be needed to tackle this issue.

Even with this problem in mind, the results of table I
are consistant with our expected accuracy. They also show a
very good repeatability: four cars have a true length close to
3.83m and all measured lengths are very close to 4.04m. The
test car, for which the in-car counter speed or its tendency
is indicated, is 4.39m long and was also measured with
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Fig. 4. Results for car number 6676
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Fig. 5. Results for car number 64991

consistent results: all tests involving a constant speed yield
the same length of 4.63. Due to the higher error in the
estimation of the acceleration the results from braking tests
are not as accurate but still within 1%.

VI. CONCLUSIONS

We have presented a new system for traffic monitoring
and law enforcement. The approach we took of using a
geometrically constrained camera setup pays off because
the degenerated view of the scene makes it much easier
to interpret the vehicles recordings. The system has several
advantages over currently existing systems. First it is able
to provide much more than speed and a visual output is
available. The measures are also more accurate than existing
techniques and can be verified by hand in the case of a legal
challenge. At last, the proposed solution can run in real-time
on a laptop, is cost effective and can even monitor multiple
lanes simultaneously if the traffic is not too dense. A sensor
could be mounted over each lane to scan it vertically in the
case of dense traffic on wide highways.
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Fig. 6. Results for car number 68407

Counter True Rel.fit
Car Speed Accel. Size speed length error
ID [km/h] [m/s2] [m] [km/h] [m] [%]

2123 62.1 0.44 4.04 3.84 0.63
6676 51.5 0.62 4.04 3.84 0.22
11874 54.7 0.58 3.65 3.54 0.54
25774 39.3 -1.42 4.56 breaking 4.39 0.35
27896 63.1 -0.09 4.63 70 4.39 0.41
37050 59.4 0.85 4.36 4.15 0.49
38416 62.8 -0.39 4.63 70 4.39 0.46
50580 59.5 0.24 5.05 4.73 0.82
61176 31.8 -1.38 4.59 breaking 4.39 0.60
64991 31.1 -1.03 4.64 breaking 4.39 0.23
68407 45.5 -0.22 4.04 3.82 0.81
74948 65.1 0.29 4.03 3.83 0.79
89378 58.5 -0.02 4.85 4.51 0.76
94881 41.9 -0.09 5.89 5.40 0.63
97647 62.6 -0.83 4.63 70 4.39 0.42

TABLE I

METRIC RESULTS FOR A FEW CARS

performed early research on this topic and Toshiyuki Umeda
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