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Abstract— This paper describes the first successful attempt
to detect wake vortices axially using an on-board infrared
pulsed Doppler LiDAR (Light Detection And Ranging). On-board
axial detection is more complex than the classic ground-based
tangential approach, because the axial air speed in vortices is
low and the atmospheric particle density is reduced, yielding a
poorer SNR. To provide meaningful results in such unfavorable
conditions we have developed a new flexible signal processing
method based on a two-primitive model fitting the spectrum of the
Doppler return. This new spectral estimation successfully detects
wake vortices with an admissible SNR that is lower than other
on-board state-of-the-art approaches. It was validated through
flight tests.

Index Terms— Doppler LiDAR, wake vortex, spectral estima-
tion.

I. I NTRODUCTION

W AKE vortices are rotating air masses generated by
aircraft as a result of their bearing pressure. These air

flows induce a rolling moment in a following aircraft enter-
ing them, creating a hazard particularly during take-off and
landing phases. The rotating speed induced by a wake vortex
in these phases is more important than in cruise phase and
the aircraft may not have the resources to recover from such
an encounter. Investigations on wake vortices started in the
1940s with the work of the Russian scientist Belotserkovsky
[1], who later made it a personal challenge to better understand
this phenomenon after the death of Yuri Gagarin, thought
to have been caused by a wake vortex encounter in 1968.
The dynamic behaviour of wakes is now well understood,
and experiments have confirmed the theoretical advances.
However, the practical impact of these advances is limited,and
wake hazard together with weather conditions are still driving
the separation distance of landings and the period between
take-offs. These restrictions affect the throughput of today’s
close-to-saturation airports [2]. A system allowing a shorter
period or a smaller separation distance, while maintainingthe
safety level, would therefore yield benefits for airports and
reduce the need for unpopular new installations.

The periods or distances between aircraft movements are
currently fixed by the International Civil Aviation Organisation
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(ICAO) regulations, and depend on the leading and following
aircraft weights (implementation of these rules by the Federal
Aviation Administration (FAA) can be found in [3] [4]).
In practice, observations show that these rules are adapted
by Air Traffic Control (ATC) personnel to reach optimum
throughput. For example, a crosswind moving a vortex away
from the trajectory of a following aircraft can lead to reduced
separation distance between planes. This adaptation is made
with the expert judgement of the air traffic controllers, but
it is nonetheless “on a case-by-case basis” and is stressful
for operators and pilots. A more systematic approach based
on in situ measurements is therefore sought. In the recent
years, ground Doppler Light Detection And Ranging (LiDAR)
systems have been deployed in large airports to detect vortices
near the runway threshold [5] [6] [7] [8]. These systems
have a very good detection capability, since they scan in the
transverse plane of the vortex where wind speeds are the
highest. However, their measurement is local: it does not cover
the entire approach corridor. This partly explains why on-board
systems are being contemplated to directly warn pilots [9]
and to be one of the components to airport-wide wake vortex
management.

On-board integration of a LiDAR system was demonstrated
in [10] and since then has been the subject of several studies,
from atmospheric particle backscatter experiments [11] [12]
to in situ measurements of wake encounters [13] [14]. The
European Commission funded I-WAKE project, which will
be described here, is however the first to test an operational
on-board LiDAR-based axial detection of wakes.

This paper is organised around the data collected during
two test campaigns. The first is a series of preliminary ground
tests performed by the M-FLAME project in 2000 [15]. The
primary goal of this campaign was to study the feasibility of
axial vortex detection. This paper uses the M-FLAME data set
for the purpose of testing our new signal processing algorithms
for wake detection.

The second part of this paper uses the data collected in
2004 during the flight tests of the I-WAKE project. Two
major differences exist between ground and on-board systems:
(i) the aircraft is a moving platform and its position, speed
and attitude must be compensated for; (ii) the return signal
is noisier as measurements are taken at an altitude of 6000
feet where particle density is lower than at ground level. The
present association of a new spectral model with the flight
tests of the I-WAKE project provides the first proof of the
feasibility of wake vortex on-board detection with an infrared
LiDAR.
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II. WAKE VORTEX DETECTION WITH A DOPPLERL IDAR

The underlying principle of operation of the vortex detector
is the Doppler effect. A Doppler LiDAR will be able to
distinguish a vortex from the rest of the atmosphere as the
wind speeds inside a vortex are different from those in its
more static surrounding environment. The Doppler effect itself
describes the frequency shift∆s of a received signal due to
the relative speedv of the transceiver and the local air mass:

∆s =
−2v

λ
(1)

whereλ is the wavelength of the emitted signal. This relation
is only valid along the axis of propagation joining the receiver
and emitter, and it is therefore only possible to measure the
component of the air speed vector along the line of sight.

The wavelength of the laser is selected with respect to the
particle size to be observed, the absorption spectrum of the
atmosphere and the eye safety of the system. For the exper-
iments described here, a 2.022µm diode-pumped Tm:LuAG
pulsed laser was used as the light source of the heterodyning
system. Pulsed operation is necessary to obtain volumetric
information, and also to avoid blindness when receiving hard
target returns from the ground or other highly reflective objects
such as clouds. The pulse width of 400ns limits the depth
resolution of the system to around 75m.

Contrary to tangential vortex detection, which only needs a
one-dimensional angle scan, axial detection of wakes requires
the laser to be swept across a volume. This is achieved by a
two-dimensional scan, as depicted in Fig. 1, and a proper range
gating of the return signal. The sinusoidal scanning pattern is
achieved by one mirror for the horizontal deflection and by
two counter-rotating prisms for the vertical deflection. The two
deflections form one full sinusoidal scan of 37 periods every
5.5s. The horizontal and vertical openings are respectively
12◦ and 3◦. The average horizontal scanning speed is 2.2◦/s
and the maximal vertical scanning speed is 47◦/s. The beam
is collimated and has a diameter of approximatively 50mm.
The angle of view of the scanner is pointed towards the 3◦

glideslope. The Gaussian laser beam is made of 2mJ pulses
sent every 2ms so that each complete scan comprises around
2500 laser shots. As each pulse travels at the speed of light,the
speed distribution of the atmosphere at a specific distance from
the LiDAR is obtained by processing the associated delayed
signal return. The return signal can therefore be time-gated to
obtain an analysis volume between 800m and 2375m. It is then
digitised at a sampling rate of 128MHz. Each resulting time
seriesSL(k) of shotL is then split into gates of 64 samples,
which is roughly equivalent to a spatial range of 75m. To
obtain better frequency resolution and stability, the chunks of
the previous and next gates are concatenated to the current
gate data, which effectively yields 19 overlapping range gates
of 225m (192 samples), each separated by a distance of 75m.
The data available for each range gateg are thus defined as:

{

SL
g (k) = SL (64(g − 1) . . . 64(g + 1))

g = 1 . . . 19, L = 1 . . . 2500
(2)

Of the numerous scans measured by the M-FLAME project,
four will be presented here. These tests are the same as the

Fig. 1. The M-FLAME experiment configuration. The first gate isat a
distance of 800m and the last at 2375m. The trace of the sinusoidal scanning
is shown on the last gate. A typical volume of analysis for a range gate is
presented at a distance of 1500m.

ones used by Keane [15] and correspond to the landing of a
large A340-600, a heavy A300-600 Super Transporter, a light
Fokker 100 and a medium A320.

III. B UILDING THE SPECTRA

As the aim is to estimate the Doppler shift of the return
signal, our analysis is based on the signal power spectrum
[16], which is obtained using a Fast Fourier Transform (FFT)
on the signalSL

g (k):

PL
g (k) =

∥

∥FFT
(

SL
g (k)

)∥

∥

2

(3)

Another less intuitive option is to analyse the signal cor-
relation, which can be performed directly on the samples
SL

g (k). Among the time-domain techniques available, the
Auto-Regressive-Moving-Average (ARMA) has been tested on
the M-FLAME data but did not provide satisfactory results
because the shape of the spectral modes is not Gaussian [17].

Analysing the power spectrumPL
g (k), the mean returned

frequency will reflect the Doppler shift and therefore can be
used to provide the mean wind speed along the line of sight.
As every wind speed will yield a different Doppler shift, the
variance of the signal is an indication of the breadth of the
speed distribution in a certain volume (for a more complete
discussion of broadening effects see [18]). Since vorticesare
not laminar flows, we can expect to detect them by considering
not only mean speed variations (Doppler shift) but also larger
spectrum variances (wider peaks).

Formally, the signal spectrum meanf and varianceσ
correspond to the spectral moments of order one and two.
The estimation of these moments is well described in the
literature. The most complete description of spectral estimation
applied to wind measurements is provided by Doviak and
Zrnic [19]. Zrnic also proposes a study of range weighting
[20] and a discussion of the particular case of pulse pairs
[21], among others. Frehlich details a method for estimating
the wind velocity statistics in a stationary atmosphere [22],
which essentially uses the same spectral estimation techniques.
Dias et al. also discuss improvements in spectral estimation
of the moments for the case of a Gaussian signal in Gaussian
noise [23] [24] [25]. The broad coverage of the subject allows
us to concentrate here on the practical aspects of spectral
estimation for vortex detection, taking the work of Keane [15]
as a starting point.
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(a) (b)

(c) (d)

Fig. 2. Comparison of the spectra obtained with and without averaging. (a),
(b), (c): individual spectra from a close range gate. (d): typical signal spectrum
obtained with a weighted spectral averaging. The maxima of allspectra are
normalised.

The spectra obtained from (3) are subject to local fading,
are noisy and can depart significantly from a single Gaussian
shape as can be seen in Figs. 2a-c. Attempts to estimate the
spectral momentsfL

g and σL
g on these raw spectraPL

g (k)
will therefore lead to spurious estimates [15]. Instead of first
calculating the moments and then aggregating the results, we
choose to apply these processing steps in reverse order (seefor
example [26]): we first average the spectra of several Lines of
Sight (LOS) and then calculate the moments on this averaged
spectrum. We also move the data to a regular grid by choosing
resampling points located on a regular lattice of size 80×20
with horizontal and vertical coordinatesi andj. However, one
cannot simply average the spectra by summing them point to
point, because each spectrum is Doppler-shifted by a different
amount. Summation would then result in a broader peak than
is actually observed. To avoid this, the spectra within the
sampling radiusr=0.3◦ are shifted to the median position
kg,med(i, j) of their peak frequencieskL

g before averaging
them. The average is then weighted with an approximative
estimationWL

g of the signal quality to further improve the
final spectrum:

WL
g =

PL
g,M − PL

g,m

PL
g,M

(4)

wherePL
g,M is the power spectrum peak value andPL

g,m is its
average value. The resampled spectrum for image point(i, j)
is thus expressed as:

Pg(i, j, k) =

∑

L∈r

WL
g PL

g

(

k − kL
g + kg,med (i, j)

)

∑

L∈r

WL
g

(5)

A typical resulting spectrum is presented in Fig. 2d and shows
that averaging the spectra provides a better basis for estimation
of the spectral moments with fewer secondary peaks and a

clear broadening of the main peak. This allows more accurate
model matching, which in turn yields more information about
the atmosphere.

Before addressing the estimation of the spectral moments,
we note that it is possible to extract the noise component from
the stable spectrum obtained from (5). It can be shown that
the power of the reference signal at the detector can reach the
point where most noise will come from the shot noise of the
reference signal on the detector [27]. This noise thereforehas
a constant spectrum which can be estimated once by acquiring
data with a direct laser feedback. The noise spectrum can then
be removed from the observed spectrum to enhance extraction
of the spectral parameters. The noise spectrum can also be
part of the spectrum model, which is the approach presented
below.

IV. M ODEL-BASED SPECTRAL ESTIMATION

Direct estimation of spectral moments is widely covered in
the literature. Estimation of the mean velocity is described in
[28] [29] and [30], while Zrnic also discusses retrieval of the
spectral width in [29] and [31]. Another approach to spectral
estimation is to match a spectrum model to the received signal
using non-linear fitting techniques [32]. Using this model-
based technique, we first present the results of a single-
primitive fit and then show that a new two-primitive model
is more appropriate and has better discriminating capability
for wake vortices.

A. Single signal primitive

A typical observed spectrumP (f) such as the one shown
in Fig. 2d has two identified components in the literature: the
returned signal and the detector noise. The returned signalcan
be modeled as a Gaussian curve with a mean frequencyf1 and
a varianceσ1 (see for example [32] [33] [34] and [35]). As far
as detector noise is concerned, its spectrumN(f) is known
from specific measurements (see Section III above). However,
an automatic gain control circuitry (AGC) was used before
the signal digitization so that the amplituden of the noise
spectrum must still be determined. The simplest model for the
signal spectrum is therefore

m1(f) = me
−

(f1−f)2

σ2
1 + nN (f) (6)

wherem is the amplitude of the signal peak. The spectrum
is further normalised to reduce the degree of freedom of the
model, leading to the following simplified expression:

M1(f) =
e
−

(f1−f)2

σ2
1 + nN (f)

1 + nN (f1)
(7)

where n is the relative noise level. Two resulting fits are
presented in Fig. 3. The main peak of the spectrum is correctly
modeled, but the fit is not accurate at its base: not only
is the variance insufficient, but the spectrum also shows a
clear asymmetry that cannot be accounted for with the current
model.

The resulting spectral widthσ1 is presented in Fig. 4. The
successive range gate images obtained are shown, starting from



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X,NO. XX, MONTH 200X 4

(a) (b)

(c) (d)

Fig. 3. Comparison of spectral fits obtained with a single signal primitive
(a,b) and two signal primitives (c,d). The maxima of all spectraare normalised.

the farthest one (top) down to the nearest one (bottom). Each
gate image can be seen as a vertical slice of the conic viewing
volume, each point of the slice being located at a constant
distance from the LiDAR. The use of an angular scan explains
why the nearer gates have a higher spatial resolution (but
are smaller) than the farther gates. The axial detection uses
the turbidity of the vortex regions to detect them. Turbidity
appears as a wider spectrum as it corresponds to a wider
range of air speeds. Since we are scanning the vortices almost
(but not perfectly) along their axis, residual projectionsof
the tangential wind velocities in the vortex also contribute to
the spread of the return spectrum. Two long parallel features
should be visible on the spectral width results of Fig. 4, one
for each vortex generated by the aircraft. However, the spectral
width differs significantly from the estimations of Keane [15],
with vortex signatures that can barely be seen. (An example
of good signatures is presented later in Fig. 7.) This absence
is explained by observing that all the broadening information
is located at the base of the peak, where the quality of the fit
of the Gaussian curve is poor (Fig. 3a). The second result
provided in Fig. 4 is the residual energyER between the
observed spectraP (f) and its modelM1(f):

ER =

∫

‖M1(f) − P (f)‖ df (8)

Since no metric was available for the energy of the observed
spectrum due to the AGC, energy-related results will be
presented without units throughout this paper. Observation
of Fig. 4 reveals that the residue is the best way to detect
the vortex activity, thereby clearly indicating that the single-
primitive model is not complete. We therefore conclude that
the single Gaussian model is not appropriate and that a second
component must be used to take the broadening of the peak
into account.
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Fig. 4. Estimated parameters for the single-primitive model: spectral width
σ1 and residue energyER. The range gate distance refers to the range gate
center. The fact that the vortices are visible on the residueenergy confirms
the inadequacy of the single-primitive model.

B. Two signal primitives

Given the insufficiency of the single-primitive approach,
an additional Gaussian curve is added to model the base of
the spectrum peak. This curve has a relative amplitudes2,
a varianceσ2 and a mean frequencyf2. We call this new
component the secondary return and obtain a new normalised
model:

M2(f) =
e
−

(f1−f)2

σ2
1 + s2e

−
(f2−f)2

σ2
2 + nN (f)

1 + s2e
−

(f2−f1)2

σ2
2 + nN (f1)

(9)

Fig. 3c-d show the results of this two-primitive fit on the
same spectra of Fig. 3a-b. The base of the main peak and the
main peak itself are now much better modeled. The residue is
very small compared to the original single-primitive approach
and consists almost entirely of small noise variations. This
indicates the new model is meaningful and that the spectrum
should indeed be modeled by two Gaussian curves of different
mean, level and variance.

A full description of the parameter variation is provided in
Figs. 5 and 6. Let us comment on each parameter one by one:

• Mean velocity, main primitive v1 or f1: the mean
frequencyf1 is here represented by the associated wind
velocity v1 obtained with (1):

v1 = λ
f1 − fl

2
(10)

wherefl(i, j) is the laser frequency, estimated by direct
sampling of the emitted pulse. This result is almost
identical to the single-primitive model, which is not
surprising since the latter was already able to fit the main
peak correctly.

• Spectral width, main primitive σ1: the spectral width
of the main peak, also converted to velocity measures, is
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Fig. 5. Estimated parameters for the two-primitive model. The first four columns describe the main primitive: its mean velocityf1, spectral widthσ1, energy
E1 and global return signal energyEg . The noise component is described only by its relative energyEN . The last column shows the SNR defined in (12).

completely decorrelated from the vortex signature. This
shows that the main Gaussian component is not suitable
for vortex detection with spectral width measurements.

• Relative energy, main primitive E1: since we are work-
ing with a normalised spectrum, the energy is directly
proportional to the peak variance, leading to similar
results forE1 andσ1.

• Relative amplitude, secondary peaks2: the relative
amplitude of the secondary return bears only a small
correlation with the vortex location. It will be used below
in the form of the secondary return energy.

• Mean velocity, secondary primitivev2 or f2: the mean
frequency (or wind velocity) of the secondary signal is
similar to that of the main signal. This velocity is more
corrupted by noise in the far field because the relative
amplitude of the secondary component is close to the
amplitude of the noise spectrum variations in this region.

• Spectral width, secondary primitive σ2: the vortex
signatures are clearly visible, showing again that only the
secondary return signal contains valid information about
their higher turbidity.

• Relative energy, secondary primitive E2: the vortex
signatures are also clearly detected. The response of this
parameter is more polarised (high or low values, with
few intermediate ones), but has fewer parasitic detections
than σ2 in the far field. This energy coincides with the
vortex location and the secondary peak is only present
where a vortex is located. It can be thus considered
as the signature of a vortex. Note that we are able to
capture larger spectral variances than [15], and the range
maximum has consequently been extended to 3m/s.

• Relative noise energyEN : defined as

EN = n

∫

N(f)df (11)

Although theabsolutenoise energy is not dependent on

the distance to the laser source,EN represents the noise
energyrelative to the signal peak, as described by (9).
As such,EN is expected to increase when the signal
peak decreases with the distance to the LiDAR, which is
observed in Fig. 6. Radially-aligned features appear on
this set of gates as well as for other model parameters.
These features are not vortices, which have a parallel
alignement, but are due to fluctuations in the energy of
the emitted pulse.

• Relative signal energyEg: the received power is not
homogeneous, as stated above, and also decreases with
distance from the laser. Zones where it is higher corre-
spond to a lower relative noise energy.

• SNR: the signal-to-noise ratio is defined in dB as

SNR = 10log
E1 + E2

EN

(12)

• Relative residue energyER: as expected, the residue
is much lower than in Fig. 4, confirming that the two-
primitive approach is better than the single-primitive one.

The estimated values of these parameters are obtained
by fitting the spectrum model to the observed data using
a non-linear iterative process, in our case a Gauss-Newton
method with a Levenberg-Marquart-type adjustment.A priori
knowledge of the vortex parameters has been integrated in
the form of limited variation domains for each parameter.
This limitation is particularly important for the variances of
the Gaussian primitives, which must have mutually exclusive
variation domains for the algorithm to converge properly. The
values used empirically areσ1 ∈ [0.25, 1.25]MHz and σ2 ∈
[1.5, 7.5]MHz. The result is a convergence that is relatively
fast, requiring less than 30 iterations. In a few cases the
convergence is not achieved, especially in the far field, which
has more variability due to a higher noise level. However, this
is limited to about 0.5% of the worst-case farthest gate and is
not visible in the final results.
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Fig. 6. The model parameters of the secondary primitive: its relative amplitudes2, mean velocityf2, spectral widthσ2 and energyE2. The last two columns
show the residual energyER and the detection fieldD.
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Fig. 7. The final detection fieldD of the two-primitive model-based vortex
detection for two other reference flybys: the A300-600 SuperTransporter (left)
and Fokker 100 (right) M-FLAME tests.

From this discussion of the variation of the model param-
eters, we conclude that a good candidate for the detection of
wake vortices would be to combine the secondary peak energy
and variance into a single detection fieldD(i, j):

D(i, j) = σ2(i, j)E2(i, j) (13)

The resulting detection field is shown in Fig. 6 and in Fig. 7 for
two other flybys. The overall performance of the new detector
is better from several aspects. First we note the higher contrast
between vortex and atmosphere zones, which, together with
the lower noise, results in a greater usable range for the LiDAR
than was presented in [15]. The results for the landing of the
Fokker 100 (Fig. 7, right) also show that we are able to detect

weaker wakes, even in the far field and without any parameter
tuning, thanks to the superior discriminating power of the two-
primitive model. Inspection of the SNR andD fields reveals
that the minimum SNR for a good detection lies between -5dB
and -10dB, while the threshold found by Keane in [15] was
0dB. Another advantage of our approach is that this SNR is
available for each estimation of the detection field. It can be
used as a weight in (13) to automatically adapt the detection
to lower SNR situations that might otherwise trigger unwanted
alarms in the cockpit. The residue energy can also be used for
the same purpose. On a broader scope, the two primitive model
provides more information about the atmosphere and may be
used to detect other atmospheric hazards which would have a
different signature on the several parameter fields.

C. Physical interpretation

We have observed that in the ground data set of the M-
FLAME project noisier spectra were found not only in the
case of local fading but also when the LOS was intersecting
the vortex. The spectra show a similar multiple-peak pattern in
both cases (Fig. 2). However, the strength of the return signal
is likely to be higher in the case of an intersection with a
vortex, so that spectra affected by local fading will not have a
significant negative impact on the averaged spectrum. In this
context, the combination of neighbouring LOSs will create a
secondary Gaussian component when multiple small peaks are
averaged to form a wider spectral base for the primary return.
This does not by itself justify the shape that we have chosen
for the secondary return. However, given the poor SNR with
which we are working, a simple model is necessary, and the
Gaussian curve provides satisfactory results.

Altough this vortex detection technique is based mainly on
axial wind speeds within the vortex, the tangential component
still affects ground and airborne detection favourably fortwo
reasons. First, we cannot guarantee a perfectly axial view of
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the vortex. This is a minor problem for the ground tests, which
in fact are very well aligned. For airborne flight tests, however,
obtaining a good alignment would require the measuring
aircraft to fly below the vortex pair, a significant safety issue
(see Section VI). Second, the use of an angular scan on two
parallel features like wake vortices means that it is impossible
to align all LOSs with the vortex axis. For instance, if the
vortex is aligned with a LOS on the left of the scanning
volume, then a LOS on the right will be several degrees off
the vortex axis (12◦ in the case of our tests). Overall, since
alignment is not perfect, the large tangential component of
the wind speed can and will be used for vortex detection in
addition to the axial component.

Finally, our own simulations of LiDAR and vortex inter-
actions have confirmed the presence of a secondary Gaussian
component in the return signal in the case where the spectra
of several neighbouring LOSs are averaged [36]. Those results
also show that the secondary component is present only in the
vortex region and thus allows the detection of wake vortices.

V. SPECTRAL ESTIMATION OF ON-BOARD SIGNALS

After development of the signal processing algorithms and
their testing on ground-based LiDAR data, the next step was
to perform flight tests with an airborne LiDAR. We will first
describe this installation. The flight tests are then depicted,
followed by a discussion on the necessary signal processing
adaptation compared to the ground system used in the previous
section.

A. Aircraft installation and flight tests

Installation of the LiDAR in the aircraft is performed under
several constraints. First, for safety reasons, the equipped
aircraft must not encounter the vortex generated by the airplane
in front of it. As wakes move downwards with time, the
altitude of the following aircraft must be equal to or higher
than that of the generating aircraft. During flight tests, the
measuring aircraft also follows the generating aircraft sothat
the vortices can be detected axially, in a configuration as close
as possible to a real approach. This forces the forward-looking
LiDAR to aim downwards, in the direction of the flight path.
The second limitation comes from the aircraft itself which has
no opening on its underside to allow the laser beam to aim
straight forward along the fuselage axis. As an additional hole
cannot be made in the fuselage, we have modified one of the
lateral windows and designed a protruding fiberglass fairing
to protect the scanner optics. For aerodynamic reasons the
fairing could not extend far outside the airplane; as a result,
the LiDAR did not aim straight ahead but with a small angle
offset from the longitudinal axis. These vertical and horizontal
anglesα andβ are represented in Fig. 8 and both have a value
of 9◦.

The flight tests were conducted in the vicinity of Toulouse-
Blagnac airport at the end of June 2004, with an A340-600
as generating aircraft. The flight plan included a zig-zag route
to be followed by the measuring aircraft behind the straight
flight path of the A340-600. This approach almost guaranteed
that the vortex would intersect the analysis volume, although

β

α

Fig. 8. Installation of the LiDAR on board the NLR Citation IIaircraft.
Angles α and β are the mean gazing angles of the LiDAR relative to the
fuselage axis.

it also meant that the vortex would be visible only for a few
scans at each pass.

B. Signal processing adaptation

From a signal processing point of view, the adaptations
necessary for an on-board system are limited to the speed,
attitude and position of the plane, which must be integrated
into our algorithms. However, the operational conditions also
require an adaptation of the model-based approach for the
lower SNR that is experienced at a higher altitude.

1) Position and attitude:The movement of the laser source
means that every shot is issued from a different point in space.
Due to the relatively high speed of the aircraft (80m/s), the
difference in position between the first and last shot of a
scan is 80m/s×5s=400m, which is a significant displacement
compared to the LiDAR range of 2360m. To compensate for
this motion and for the aircraft’s attitude, all the LOSs of
one scan are placed in a single reference system (in this
case the reference frame of the aircraft when the last LiDAR
return was acquired). The bundle of LOSs is then truncated
by near and far boundaries of 800m and 2360m, respectively.
This truncation reduces the volume of analysis but guarantees
geometrically coherent results.

2) Speed: In a Doppler system, the relative speed of the
source and the target creates the frequency shift. The speed
of the aircraft therefore has a major impact on the results and
must be integrated into the signal processing. This is especially
true because both speeds have the same weight in (1), so that
a variation of 1% in the aircraft speed (0.8m/s) correspondsto
nearly 25% of the airspeed variations due to a vortex (which
are roughly within±3m/s). The direction of each LOS must
also be taken into account for this compensation since the
LiDAR measures air speed vectors along the LOS only.

3) Adaptation to the lower SNR:The aerosol concentration
at the altitude of the flight tests is much lower than on the
ground, leading to a lower reflected and received power than
observed during the M-FLAME tests. As the noise level at
the detector is constant, the global SNR of the sampled signal
will decrease. Given the low SNR of -25dB to 0dB observed
in the flight, test data one must carefully integrate the noise
component into the spectrum model. For the gate closest
to the observing aircraft (980m), the noise spectrum can be
considered flat with respect to the amplitude of the main
return peak (Fig. 9a). These spectra are similar to those of the
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(a) (b)

Fig. 9. Spectral fits of on-board signals with a two-primitivemodel for
range gates 1 (a, 980m) and 7 (b, 1700m). The maxima of all spectra are
normalised. Lower graphs show a zoom on a limited frequency range around
the central peak of the upper graphs. The first spectrum (a) has a noise floor
that is significantly higher than what was observed for the ground tests in
Fig. 2d, even though (a) is from a close range gate.

ground tests. However, as the analysed gate is located further
away from the aircraft, the SNR decreases rapidly and the
larger noise component amplitude can no longer be considered
constant across the spectrum. A typical spectrum at a distance
of 1640m is presented in Fig. 9b. Its higher noise level prevents
the detection of the secondary signal component and also leads
to noise in the estimated spectral width of the main peak.

As explained in Section III, the shape of the noise spectrum
is constant over the scans, so that only the amplitude factor
varies. It is thus logical to estimate this spectrum and use
it in the same way as in the ground tests. However, no
specific noise-spectrum shots were taken during the I-WAKE
flight tests because the laser was started after take-off and
no such tests could be performed in flight. Furthermore, tests
done before take-off would not accurately describe the noise
spectrum, as the laser changes its characteristics depending
on factors such as aircraft altitude and vibration levels. For
these reasons, the noise spectrum is estimated from the last
samples of the LOS. These samples correspond to a distance
of a little more than 5km from the aircraft, which is outside
the useful range of the LiDAR. The corresponding data should
therefore only contain noise whose spectrum is estimated for
every LOS and then averaged over the whole scan to obtain
stable data. This approach is more time-consuming than the
off-line estimation made in the ground-based tests, but hasthe
advantage of automatically adapting every 6s to changes in
the detector noise spectrum that might occur during the flight.

Finally, the lower SNR requires that we adapt two parame-
ters specified for the ground tests: the gate length is now setto
120m to ensure a better basis for the FFT, and the resampling
radiusr is set to 0.7◦ to include more shots in the spectrum
aggregation. As this radius is significantly higher than forthe
ground tests, the resolution of the range gate images is halved

to 40×10 points.

C. Geometric estimation of the vortex positions

We performed a geometric estimation of the vortex positions
in the scanned volume to provide more confidence in our
results. These estimations use the all geometric measurements
available, including the position and attitude of both the
generating and following aircrafts, their speed, and the angles
of regard of the LiDAR scanner. An estimate of the wind
speed vector (23kt, 291◦) was also used to obtain the correct
lateral displacement of the vortices. However, the wind has
little influence on our measurements because it was almost
aligned with the track of the generating aircraft. For the vortex
descent rate, we used the following expression that yields a
result close to the commonly applied value of 1m/s:

wsink =
Γ

2πb0

≈ 0.96 (14)

where the circulationΓ was set to 300m2/s, b0=πb/4 and
b=63.45m is the aircraft wingspan. The results of this geo-
metric estimation are presented in the final results as circles
(Figs. 10 to 12). The diameter of each circle does not reflect
the true zone of influence of the vortex; it has been selected
based on visualization criteria only. Estimations for the vortex
age and for the laser-vortex misalignement (6◦ vertically and
horizontally) were also obtained using the geometric estima-
tion of the vortex positions.

VI. A IRBORNE RESULTS AND DISCUSSION

The results of each model parameter are presented for the
scan 07-23 (2GB-block number 7, scan 23) in Figs. 10 and 11.
A time evolution of the vortex is shown in Fig. 12 for scans
09-09 to 09-14. Like the ground results, the nearest gate is
shown at the bottom. The distance to the airplane increases
by steps of 120m moving from the bottom to the top of the
figure. The center of the nearest gate is located at 980m, and
that the farthest is at 2060m.

Two vortices should be visible in the detection field of
Fig. 11, because the gate size is much larger than the vortex
separation distance. We observe this for gates 4 to 6, although
the strength of the two vortices is dissimilar. On those three
gates the vortices are roughly parallel, as expected, and fit
their geometrically-predicted positions.

Compared to the ground tests (Figs. 5 and 6) we note that
the parameters are noisier; this is expected given the lower
SNR, which is now at best 0dB. As noted in Section IV-B
the detection capability quickly degrades when the SNR is
below -10dB, which here corresponds to a distance of 1580m
or gate 6. The detection field of Fig. 11 confirms this -10dB
threshold, as the first six gates are well rendered but from the
seventh gate onward the results are significantly noisier. Due
to the zigzag trajectory of the following aircraft, the vortices
appear only in the range from 1300m to 2000m and within
this range only three gates (4 to 6) have an acceptable quality.
The necessity of good noise estimation is also more important
than for the ground tests as the noise (and its power variations
along the spectrum) is relatively more important and quickly
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masks the useful signal if not modelled properly. Tests have
shown that, using a simpler flat noise spectrum, the quality of
the results degrade much faster and no detection can be made
at all.

The observed mean speed deficit is more intense than for the
ground tests. This is due to the larger misalignment between
the vortex and the scanning axis, which leads to the tangential
component being taken into account in the measurements (see
Section IV-C). Indeed, the space between the two vortices
contains air moving downwards; this air mass will appear as
moving away from the aircraft, when seen from above from
the following plane. The mean speed deficit also occurs over
a wide range, which shows that we are looking at a well-
formed vortex section, before its turbulent breakdown. Theage
of the vortex was estimated using geometric simulations, and
ranges from 36s to 42s depending on the scan and gate. This
age correlates with the simulations of Darracq, who observed
that a vortex is axially detectable between 18s and 48s of
age [37]. The present technique can thus work not only with
almost pure axial data (as shown by the ground tests) but
also if the following aircraft is not perfectly aligned withthe
vortex. However, our approach may not work in a purely axial
configuration and when the observed vortex is very young
[37]. Old vortices after turbulent breakdown will also be more
difficult to detect, but they present a limited threat to the
following aircraft.

Finally, Fig. 12 shows six successive scans across the vortex.
Their apparent displacement to the left actually corresponds
to the zig-zag pattern of the measuring aircraft, which was
moving to the right at the time. The coherence of vortex
detection is visible in both time and space. The limitation of
the range of detection is also visible, as no vortex is detected
beyond 1820m.

VII. C ONCLUSIONS

In this paper we have presented a spectral estimation of on-
board LiDAR signals, with the goal of detecting wake vortices
in an axial fashion. Several methods and variations have been
tested, using data collected during both ground and on-board
test campaigns. Existing techniques in the literature failto
detect vortices reliably while the detector is airborne, but our
new approach of two-primitive spectral modeling succeeds in
this task. Our results also match the geometric estimation of
vortex positions. The proposed spectral estimation has two
major advantages over previous approaches. First, it allows
correct detection at lower SNR, which proved to be essen-
tial for the analysis of on-board signals. Second, since the
technique provides more information about the atmosphere,it
could be used to detect other events like wind shear or clouds,
although confirmation of this will require a more in-depth
analysis. Further research is currently underway to address
the implementation of our proposed technique in on-board
computer platforms.
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